2 research outputs found

    Uneven key pre-distribution scheme for multi-phase wireless sensor networks

    Get PDF
    In multi-phase Wireless Sensor Networks (WSNs), sensor nodes are redeployed periodically to replace nodes whose batteries are depleted. In order to keep the network resilient against node capture attacks across different deployment epochs, called generations, it is necessary to refresh the key pools from which cryptographic keys are distributed. In this paper, we propose Uneven Key Pre-distribution (UKP) scheme that uses multiple different key pools at each generation. Our UKP scheme provides self healing that improves the resiliency of the network at a higher level as compared to an existing scheme in the literature. Moreover, our scheme provides perfect local and global connectivity. We conduct our simulations in mobile environment to see how our scheme performs under more realistic scenarios

    Uneven key predistribution scheme for multiphase wireless sensor networks

    Get PDF
    In multiphase Wireless Sensor Networks (WSNs), sensor nodes are redeployed periodically to replace nodes with depleted batteries. In order to keep the network resilient against node capture attacks across different deployment epochs, called generations, it is necessary to refresh the key pools from which cryptographic keys are distributed. In this thesis, we propose Uneven Key Predistribution (UKP) scheme that uses multiple different key pools at each generation. Keys are drawn unevenly from these key pools and loaded to sensor nodes prior to deployment. Nodes are loaded with keys not only from their current generation, but also from future generations. We conduct simulation based performance evaluation in mobile environments using three different mobility models. One of them, Circular Move Mobility model, is first proposed in this thesis. Our UKP scheme provides self healing that improves the resiliency of the network up to 50% under heavy attack as compared to an existing scheme in the literature. Moreover, our scheme provides almost perfect local and global connectivity
    corecore